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The description of the unsteady motion of a fluid occupying a region which changes in 
time and whose boundary consists of a free surface and a rigid wall, and the line of contact 
between them is of considerable interest, from both the theoretical and applied hydrodynamics 
points of view. The law of motion of the rigid wall is given, and all boundaries of the fluid 
are free at the initial moment. The topology of the flow changes at the initial moment, and a 
rigid part of the boundary appears, which was previously absent. Specification of the problem 
makes it necessary to simultaneously determine both the motion of the fluid and the position 
of the line of contact at each moment in time. Even after significant simplifications, the 
problem remains complex, and exact results are virtually nonexistant. 

The initial stages of the process are of special interest. A detailed review of works 
devoted to the study of this problem are given in [i, 2]. A new approach to the analysis of 
the initial stages of the motion of the fluid was proposed in [3]. This approach is based on 
the introduction of Lagrangian coordinates in which the region of the flow is fixed. In the 
present work, this approach is used to analyze the plane problem of the symmetric penetration 
by a rigid parabolic contour of an ideal, slightly compressible fluid. 

i. Problem Statement. We examine the plane, unsteady motion of an ideal, slightly com- 
pressible fluid, which occupies the half-plane y' < 0 at time t' = 0, and is at rest (here the 
prime denotes dimensional variables). The line y' = 0 at the initial moment is a free bound- 
ary. 

Le[ R, V be positive constants. For fixed t', the equation 

g' = x '2 / (2R)- -  Vt' (1.1) 

determines the parabola in the x', y' plane, which is identified with a rigid, nondeformable 
contour. At t' = 0, it touches the free boundary at the point x' = 0. Relation (I.i) gives 
the motion of the contour along the y' axis with constant velocity V. We must find the motion 
of the fluid which arises from this, assuming that the part of its boundary which is not part 
of the rigid contour remains free. This assumption, in particular, means that in the plane 
of the Lagrangian coordinates ~', D', the region occupied by the fluid is known beforehand: it 
is the half-plane D' < 0. In the Lagrangian variables $', n', the unknown functions are the 
pressure p', the density p' and also the coordinates x', y' of the fluid parcel which occu- 
pied the position ~', q' at t' = 0. The vector displacement of the fluid parcel X' is deter- 
mined from the equation X' x' ~' ' = ' ' = = , w h e r e  x ( x ,  y ) ,  ~' (~',  ~ ') ,  X '  = (X'~ F ' ) .  

B e f o r e  f o m u l a t i n g  t h e  i n i t i a l  b o u n d a r y  v a l u e  p r o b l e m  i n  d i m e n s i o n l e s s  v a r i a b l e s ,  we e x -  
a m i n e  t h e  i s s u e  o f  t h e  c h o i c e  o f  l e n g t h  a n d  t i m e  s c a l e s  a n d  t h e  unknown f u n c t i o n s .  F rom ( 1 . 1 )  
we f i n d  t h a t  t h e  l aw  o f  m o t i o n  o f  a p o i n t  i n t e r s e c t i n g  t h e  c o n t o u r  f r o m  t h e  u n d i s t u r b e d  s u r -  

! 
face of the fluid (y' = 0) is given by xi(t') = /2-RVt' Consequently, directly after the 
start of penetration by the contour, the point moves with a velocity which is known to ex- 
ceed the local speed of sound, and the free surface remains undisturbed. This stage is called 
the supersonic stage, and for low penetration velocities, its duration T s can be estimated by 
equating the velocity of motion of the point x~ with the speed of sound in the fluid at rest 
co, from which we have T s ~ RV/(2c~). Correspondingly, it is convenient to select the quan- 
tity M2(R/V) (M = V/c 0 is the Mach number) for the time scale, and the quantity RM as the 
length scale, which is of the same order of magnitude as the distance traversed by the point 

I x i in the course of the supersonic stage. As a consequence of problem symmetry, the displae- 
ment vector of the fluid parcel with coordinates $' = 0, ~' = 0 is known beforehand [ X'= 
(0, -Vt')], and therefore M2R is chosen for the displacement scale. The density of the fluid 
at rest P0 is chosen as the density scale. From the law of conservation of momentum it follows 
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that it is necessary to take the one-dimensional shock pressure p0c0V as the pressure scale. 
We transform to dimensionless variables, whose designation is distinguished by the absence 
of a prime. 

Written in Lagrangian coordinates, the Euler equations have the form 

PJ*Xtt + V ~  = 0 ,  plJ[ = I (q<O).  (1.2) 

The first of these is the momentum equation, the second is the continuity equation. It is 
necessary to add an equation of state to (1.2), which for a slightly compressible fluid with 
relatively small pressures can be represented as [2] 

p = (p= - -  1)/(nM) ( 1 . 3 )  

(for water, n z 7.15). In (1.2), J = O(x)/O(%) is the Jacobian; J* is the adjoint to J. 

We must find the solution to (1.2), (1.3) in the region q < 0, t > 0 for initial condi- 
tions 

X = 0,  X t = 0 

which are satisfied everywhere except possibly 

p =o(q =o, 

(t = O, v I ~ 0) ,  ( 1 , 4 )  

at the origin, and the boundary conditions 

JEJ > a(t));  (1.5) 
Y=(I /2 ) (~+MX)  2 - t  ( ~ = 0 ,  l~l<a(#)  (1.6) 

[a(t) is the inverse image in Lagrangian coordinates of the point of contact of the free 
boundary of the fluid with the surface of the rigid body]. Condition (1.6) signifies that 
a fluid parcel incident on some part of the rigid boundary can only be displaced along that 
boundary. 

Additionally we require that the kinetic energy of the fluid T, defined by the expres- 
sion 

0 

T : (poVf/2) y ~ [Xt I~d~d% 

be finite at all times of the motion 

T<+~ (t > 0), (1.7) 

In addition, we are interested only in those solutions to problem (1.2)-(1.7) which satisfy 
the one-sided inequality 

M-in + Y ~  (i/2)(~ + MX)Z--  t (q ~ 0 ,  - - ~  < ~ < + ~ ,  t > 0 ) .  ( 1 . 8 )  

T h i s  s i g n i f i e s  t h a t  t h e  f l u i d  p a r c e l s  c a n n o t  be  found  in  t h e  " f o r b i d d e n "  r e g i o n  bounded by 
c o n t o u r  ( 1 . 1 ) .  The s u p p l e m e n t a r y  c o n d i t i o n s  ( 1 . 7 ) ,  ( 1 . 8 ) ,  a p p l i c a b l e  t o  t h e  p r o b l e m  o f  p e n e -  
t r a t i o n  in  Pukhnachev  [ 3 ] .  

The a p p r o x i m a t e  s o l u t i o n  t o  p r o b l e m  ( 1 . 2 ) - ( 1 . 8 )  w i l l  be s o u g h t  f o r  s m a l l  M. I f  i n  
(1.2)-(1.8) we formally go to the limit M § 0 while accounting for the equality J = I + 
M0(X)/0(~) (I is the unit matrix), then the solution of the limiting problem gives the leading 
term of the asymptote of the unknown functions for M ~ i. Keeping the previous notation 
for the limits of the unknown functions as M § 0, we find from (1.2) and (1.3) 

Xtt + V ~  = 0; (1.9) 

p = --div~ X. (i.i0) 

The momentum equation (1.9) and initial conditions (1.4) show that there exists a dis- 
placement potential ~(~, q, t) such that X = V~. Substituting (i.i0) into (1.9)and con- 
sidering that the potential ~ is defined to within an arbitrary, time-dependent term, we find 
that the function ~ must satisfy the wave equation 

The inpenetrability condition (1.6) for M = 0 has the form 

O,  = (t/2)~ ~ -- t (q = O, J~l < a(t)). ( 1 . 1 2 )  

Us ing  ( 1 . 1 1 ) ,  Eq. ( 1 . 1 0 )  g i v e s  p = - ~ t t .  A f t e r  a d o u b l e  i n t e g r a t i o n  o v e r  t ,  ( 1 . 5 )  a t  t h e  
free boundary is represented as 

: 0 (q = 0, }~[ > a(t)). (1.13) 
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Equation (1.7) gives 

I V ~ , ? ~ d ~ <  + oo ( t >  0), (1.14)  

the one-sided inequality (1.8) is written in the form 

�9 n~<(1/2)~ ~ -  t (q = 0 , - - o o < ~ <  + ~ ) .  ( 1 . 1 5 )  

I t  i s  n e c e s s a r y  t o  add t o  ( 1 . 1 1 ) - ( 1 . 1 5 )  t h e  i n i t i a l  c o n d i t i o n s  

�9 = O, Ot = 0 ( n ~ O ,  t = 0). ( 1 . 1 6 )  

System (1.11)-(i.16) is the acoustic approximation to the problem of the penetration of 
a parabolic contour into an ideal, slightly compressible fluid. In problems of penetration 
by a rigid body, the acoustic approximation is usually written in Eulerian variables [4]. In 
order to transform from the proposed statement of the problem to the usual statement, it is 
necessary to formally differentiate relations (1.11)-(1.13) by t, and determine the potential 
velocity ~ ~ ~t �9 In addition, one must bear in mind that the Eulerian x and Lagrangian vari- 
ables ~/differ from one another by a quantity of the order O(M 2) in the considered time in- 
terval as M § 0, which makes it possible to equate these two variables. 

Note that although the relations in (1.11)-(1.16) are linearized, the problem remains 
nonlinear, since it is necessary to find not only the potential of the displacement, but also 
the function a(t), which gives the position of the points of contact. This circumstance 
makes the statement of the problem in the form (1.11)-(1.16) preferable. Recall that in 
Eulerian variables, the position of the points of contact is determined from the so-called 
Wagner condition [5] 

t 

(a It), 0, = �89 (0 - t (t > 0), 
0 

which is a nonlinear integral equation in terms of the function a(t). The author was unable 
to simplify to any degree this equation. In the proposed problem statement, a(t) is the 
root of an algebraic equation in simple cases, and the root of a transcendental equation 
in complex cases. For certain examples, the function a(t) is determined in explicit form. 
On the other hand, if the function a(t) is known, then the pressure distribution along the 
wetted part of the contour and the velocity field are conveniently computed from a state- 
ment of the problem in Eulerian variables. 

2. Auxiliary Problem. We examine the initial boundary problem with mixed boundary 
conditions 

~.  = ~ u + ~  ( ~ < 0 ) , ~ = 0  ( ,~=0,  l~l>a(O), 

% =/(~,t)  (q =0,  [~ l<a( t ) ) ,~=~t  = 0  ( ~ < 0 ,  I ~ l > O , t = O ) ,  ( 2 . 1 )  

IV~I + o (~ + q~ -~ ~)  

with the following restrictions: a)1(--~, t)=/(~, t), a(O)= O; b)a'(t.~)= i, a~(t)> I for 0 < t < 
t,, 0 < a'(t) < 1 for t > t,; c) a(t) is a piecewise-smooth function, f(g, t) is a smooth 
function of its arguments. We must determine ~(~, O, t) for I~l < a(t) and ~D($, O, t) for 
I$I > a(t), assuming that the functions f($, t) and a(t) are given. 

The solution to such a problem is based on the use of an integral relation which couples 
the boundary values ~($, O, t) and ~($, O, t) [6]: 

f f *n(~" O' tl) d~ldtl r O, t) = -~- . . . . . .  . ( 2 . 2 )  

Here o ( ~ ,  t) is the isosceles right triangle in the half-plane ~i, tl (tl > 0) with vertex at 
the point (~, t) and its base on the O$ I axis (Fig. i). For 0 < t < t,, the expansion of the 
disturbed region [N = 0, I$I < a(t)] takes place with a velocity which exceeds the propagation 
velocity of the disturbance [for problem (2.1), this velocity is equal to unity] in the medi- 
um. Therefore, the right curve OAC retains the initial conditions, i.e., ~(~, 0, t) ~ 0 on 
this curve. In the region I~I < a(t), the function ~D(~, 0, t) is known, and therefore, if it 
is found in the region BAC, then the problem is solved. 

We write (2.2) for the point P, which lies strictly inside the region BAC, but is below 
the line t~ = $i + t, + a(t,). Then the integration in (2.2) is carried out over two regions: 
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s 
P 0 

Fig. 1 F i g .  2 

01 = KAOD, where ~D(~I, 0, t l) = f($i, tl), and o 2 = PKAN, in which ~(~, 0, tl) must be de- 
termined. From the condition ~(~, 0, t) = 0 for I$ > a(t) and (2.2), we obtain the integral 
equat ion 

o2 2 (~ __ ~1)2 O1 

the solution of which is constructed in [6] and has the form 

IDK; 

~ (~, O, t) = - -  l ~ V ~  I ( E) d~, ( 2 . 3 )  
0 

where IPKI and IDK I are the lengths of the segments PK and DK, respectively; f(E) is the value 
of the function f(~, t) at the point E, which lies on the segment DK, such that IEKI = ~ (see 
Fig. i). Formula (2.3) is also valid in the case where the point P lies somewhat above the 
line t I = ~l + t, + a(t,). In this case, the point D lies on the line A'C' and (2.3) contains 
the integral along the segment which lies in the region B'A'C' below the line t I = -$~ + t, + 
a(t,), in which f(E) = ~D(~l, 0, tl), where the right-hand side is a consequence of the sym- 
metry of the problem computed using (2.3). Subsequent use of (2.3) makes it possible to con- 
struct OD(~, 0, t) over the entire region BAC, which in fact solves the auxiliary problem. 

3. The Law of Motion of the Point of Contact. If in (2.1), we set ~ = ~(~, q, t), 
f(~, t) = ~2/2 - t, then we arrive at the acoustic approximation in the penetration problem 
(1.11)-(1.16), written in Lagrangian variables. Correspondingly, for ~ = ~(x, y, t), ~ = x, ~ = 
y, f(x, y) = -i we have the same approximation, but in Eulerian coordinates. 

In the Lagrangian description, the left-hand side of (2.3) is equal to the rise of the 
fluid parcel which lies on the free boundary, at the initial moment, to a distance ~ from the 
origin, above the undisturbed level of the fluid. But with the approach of the point of ob- 
servation P to the point of contact K, i.e., for IPK 1 § 0, the right-hand side of (2~3) tends 
toward infinity in the general case, and condition (1.15) cannot be satisfied. Consequently, 
it is necessary to require that for IPKI = 0, the integral in (2.3) be equal to zero:~ 

IDKI 

Y ~- l /Z / (E)d~=O.  ( 3 . 1 )  
0 

This fundamental equation serves to compute the quantity IDKI, knowledge of which is suf- 
ficient to determine the function a(t). It turns out that when (3.1) is satisfied~ displace- 
ment of the fluid parcels is described right up to the boundary of the fluid volume by con- 
tinuous functions, for which conditions (1.14), (1.15) are satisfied. 

We determine the function a(t) directly after the emergence of the disturbance wave 
front at the boundary (t, = 1/2, t > t,). We introduce a new coordinate system ~, B ~ which 
has its origin in common with the old system $i, tl, but is rotated counterclockwise with 
respect to the latter by an angle of ~/4. In this case, $i = (~- ~)//~, tl = (s + ~)/v~. 
In the new system, let the point D have the coordinates (s0, 80), which can be assumed to be 
known. Then the point E has the coordinates (s 0 + !DK 1 - ~, ~0). After introducin~ the new 
integration variable o = IDKI - U, we find 

/ ( E )  = ( 1 ~ ) ~  + e~ ,  c = (~o - -  ~o)/2 - -  ~ / / ~ ,  ( 3 . 2 )  

where we have used f(D) = 0. Substituting (3.2) into (3.1) and computing the integral, we 
obtain the formula IDKI = -5c. The formulas for transforming from one coordinate system to 
the other give 
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a(t) = (ao --  ~o + I D K I ) / V ~  t = (~o § ~o + IDKI) / I f2 .  (3.3) 
This system determines the function a(t) in parametric form. We choose as the parameter the 
quantity k = $0 + 2-a/2. Note that k is equal to zero when the point D coincides with point 
A, and increases with removal of the point D from point A along the curve AOA'. The para- 
meter k takes on its maximum value of /~ when D coincides with A'. 

We denote the difference ~0 - 90 by ~ and determine the dependence ~= ~(k) from the 
equation f(D) = O. Straightforward calculations give ~ = /2 - 2S/4kl/2, from which we have 
c = -21/4k~/2. System (3.3) takes on the form 

a(t) = i + 3 .  2~/4k~/2, t = a ( O - -  t ~  + V 2 k ,  ( 3 . 4 )  

f r o m  w h i c h  i t  f o l l o w s  t h a t  a 2 ( t )  + ( 5 / 2 ) a ( t )  - 5 / 4  = ( 9 / 2 ) t .  T h u s ,  i n  t h i s  c a s e ,  a ( t )  i s  
given in explicit form 

a(t) = (3 ]/"5 + 8t - -  5)/4. ( 3 . 5 )  

We determine the time t s at which the rarefaction wave, formed at the moment t, = 1/2 
from the left side of the contour, reaches the right contact point. To do this, it is neces- 
sary to set k = /~ in system (3.4); then a(t s) = 4, and t s = 11/2. This means that when 
i/2 < t < 11/2, the law of motion of the contact point is given by (3.5). For t > 11/2, the 
function a(t) has a more complex form, and at present it is not known if it is possible to 
write it in analytical form. 

From (3.5), it is possible to analyze the change in the law of motion of the contact 
point at the moment the wave front of the disturbance emerges at the free boundary. It is 
straightforward to obtain the following relations: a(i/2 + O) = a(i/2 - O) = i, a'(i/2 + O) = 
a'(1/2 - O) = I, a"(i/2 + O) = -4/9, a"(i/2 - O) = -i. Thus, the function a(t) is contin- 
uously differentiable in the interval 0 < t < 11/2, and its second derivative changes dis- 
continuously at t = 1/2, with a"(I/2 + O) - a"(I/2 - O) = 5/9, i.e., at this moment in time, 
the point of contact is accelerated. 

4. Model Problem. We examine the plane problem of penetration of a semi-infinite plate 
with rounded edges in the acoustic approximation. The initial boundary value problem for the 
displacement potential ~(~, ~, t) has the form 

optt =OP~§176 ( q < 0 , - - o o < ~ < + c o  L 
�9 n =  (1/2)~ 2 -  t (T I ~ 0, 0 <  ~ < a ( t ) ) ,  

op~=- t  (n=0,~<0) ,  (4.1) 
OP = 0 O] = O, ~ :> a(t)), 

OP = OP t = 0  (~1~ O, t = 0 ) ,  IV~OPI-+ 0 ( ~ - +  + o o ,  n ~< 0), 

OPn~<(I/2)~ 2 -  t (r t = 0 , $ > 0 ) .  

The condition of finite kinetic energy of the fluid (1.14), which we know cannot be satisfied 
in this model problem, is not included in problem statement (4.1). 

In the formulated problem, there is a single point of contact, and therefore its law of 
motion is simpler than in a penetration problem with a parabolic contour (1.11)-(1.16), and 
can be given in explicit form. Just as before, the free surface of the fluid remains undis- 
turbed until the moment t = I/2, and consequently, a(t) = /~ for 0 < t < 1/2. Furthermore, 
up until some moment tl, the law of motion of the point of contact will be the same as in the 
problemlof symmetric penetration by the parabolic contour. For I/2 < t < tl, the function 
a(t) is given by formula (3.5). The value t I is determined from the condition t I = a(tl) 
(Fig. 2) and is equal to 5/2. 

Let us find the law of motion of the point of contact for t > 5/2. To do this, we will 
start from condition (3.1) and use Fig. 2. As in Paragraph 3, we introduce a new integration 
variable o = IDKI - p. It is clear that o = IDE I . When the point E lies inside the interval 
DS, then f(E) = -t, but t = o/~. From this we have f(E) = -o//2 for 0 < o < 2B0, ~0 =IOLI, 
where 90 is taken as a parameter. When the point E lies inside the interval SK, then f(E) = 

~/2 - t. Here t = a / I / -2 ,  ~ = a/~2-- IDOl, IDOl ~ ]/-2~oi from which we have /(E) = (a/~2-- 

~2~0)2/2- o/~2i for 2~0< a< IDKb Condition (3.I) gives 

2Bo IDKI 
1 ! ~da ~ " / 4 - - a ( ~ ~  d ~ = 0 .  (4.2) 

] /5  ] /  [ DK I -- g + 1/[ DK [ -- a 
2~ o 
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Equation (4.2) serves to determine IDKI as a function of 90 (D0 > 0). If IDKi is known, 
then the coordinates of the point K are: 

~ = I O K I / ] / ' f - -  1/5~0 , t K = ]DKI/]/r~. (4.3) 

System (4.3) gives the function a(t) [~K = a(tK)] in parametric form for t > 5/2. 

We make the substitution o = IDKI~ in (4.2) and denote the quantity $0/IDKI by ~, and 

/i - 2m by b. After computing the integrals in (4.2), we find IDKI = 5/(V2bS), 60--5/(2V ~bS) -- 

5/(2~2~). Substituting these equations into (4.3), we finally obtain a(t) = (5/2) 2/5 t 3/~ 
(t > 5/2). It can be shown, that in the neighborhood of the point t = 5/2, the function a(t) 
is twice continuously differentiable, while its third derivative changes discontinuously at 
this instant [a'"(5/2 + 0) - a"'(5/2 - 0) = 166/3125]. 

Thus, after determining the function a(t), the plane problem of penetration of an ideal, 
slightly compressible fluid by a rigid contour is completely equivalent to the problem of 
flow past a slightly curved thin wing in supersonic gas flow. The latter problem ihas been 
studied in detail in [6], and the results obtained and the method of analysis are transferred 
to our problem without difficulty. In particular, simple formulas for calculating the pres- 
sure distribution along the wetted part of the contour were obtained. So in problem (i.ii)- 
(1.16), the pressure distribution for 0 < t < 11/2 is expressed by normal Lagrangian elliptic 
integrals of the first type. 

The velocity field of the fluid parcels, computed in the acoustic approximation have 
integrable singularities in the neighborhood of the points of contact. These neighborhoods 
must be treated by the method of matched asymptotic expansions, and an "inner" expansion of 
the unknown functions constructed. This is done by considering the solution obtained in the 
acoustic approximation as the leading term of the outer asymptotic expansion of the solution 
for the original problem. As a preliminary, it should be stated that in a coordinate system 
moving with the point of contact, the fluid flow in a small neighborhood of this point will 
be essentially nonlinear and quasi-steady. The latter circumstance makes it possible to use 
the results of the theory of subsonic gas jets. The construction of an "inner" quasi-steady 
solution in this manner loses its validity at the instant the shock wave arrives at the free 
surface. This stage of the process is examined in [7]. It was shown that the motion of 
the fluid is described by a complex initial boundary value problem for the equations of 
transonic gas motion. However, for M § 0, the duration of this stage tends toward zero, 
which is what makes it possible to consider the acoustic approximation without treating the 
transonic stage. 

i. 

2. 

3. 

. 

5. 

6. 

7. 

LITERATURE CITED 

M. B. Lesser and J. E. Field, "The impact of compressible fluids," in: Ann. Rev. Fluid 
Mech., 15, 97 (1983). 
A. A. Korobkin and V. V. Pukhnachov, "Initial stage of water impact," in: Ann. Rev. 
Fluid Mech., 20, 159 (1988). 
V. V. Pukhnachev, "Linear approximation to the problem of the entry of a blunted body 
into water," Collection of Scientific Works of the Academy of Sciences of the USSR, 
Siberian Branch, Institute of Hydrodynamics, No. 38 (1979). 
V. D. Kubenko, Penetration of a Compressible Fluid by Elastic Shells [in Russian], 
Naukova Dumka, Kiev (1981). 
A. A. Korobkin, "Penetration of a slightly compressible fluid by a blunted body," Prikl. 
Mekh. Tekh. Fiz., No. 5 (1984). 
E. A. Krasil shchikova, A Thin Wing in Compressible Flow [in Russian], Nauka, Moscow 
(1986). 
A. A. Korobkin and V. V. Pukhnachov, "Initial asymptotics in contact hydrodynamics prob- 
lems," in: Proceedings of the 4th International Conference on Numerical Ship Hydrody- 
namics, S. I, s. a., Washington (1985). 

525 


